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Introduction 
 
Reliability Based Design Optimization (RBDO) 
is a process of optimizing under uncertainty to 
obtain a reliable (in the probabilistic sense) 
optimum for a design, which is robust under the 
expected variability inherent in realizing the 
design. In this case, we are optimizing the design 
of a ground vehicle to reduce weight while 
maintaining or improving durability. Like any 
optimization, it is best done on a system level. 
When optimizing under uncertainty, considering 
a large number of sources of variability makes the 
optimization method more robust. 
 
Objective 
 
The objective is to improve the RBDO process, 
expanding from component optimization to 
system optimization of a ground vehicle, consider 
more sources of uncertainty and use a 
multi-physics and multi-scale approach. This 
requires greater computing power than has 
previously been applied to such optimizations. 
 
Methodology 
 
The massively parallel computing power of the 
Department of Defense (DoD) High Performance 
Computing (HPC) systems is used to 
simultaneously optimize multiple components 
which interact with each other in a mechanical 
system. Specifically, we have a subsystem of a 
military ground vehicle, consisting of at least four 
components and we are simultaneously 
optimizing all the components of that subsystem 
using RBDO methods. We do not simply 
optimize one component at a time, sequentially, 
and iterate until convergence. Instead, we 
simultaneously optimize all components together. 
This can be done efficiently using a parallel 
computing environment. 
 
Results 
 

The speed up realized by parallelizing enables the 
jump from component level to system level 
optimization, the addition of multiple 
physics-of-failure in the analysis, and 
consideration of vastly more sources of 
uncertainty than could be achieved from serial 
computing. 
 
Significance to DOD 
 
In order to reduce the weight of ground vehicles 
while maintaining or improving durability, 
RBDO is a key enabler for DOD. The only 
efficient way to accomplish this goal is to 
parallelize the method. 

 
1. Reliability Based Design Optimization 
(RBDO) 
 
        In order to reduce the weight, improve the 
reliability and increase the lifetime of a complex 
mechanical system, such as a ground vehicle, we 
need to know how to use modeling and simulation 
(M&S) to assess durability and maintenance. 
Then we can optimize the system with weight as 
the objective to minimize, but with the durability 
as a constraint. This should allow us to both 
reduce the weight and increase the availability of 
the ground vehicle. This is what Reliability-Based 
Design Optimization (RBDO) attempts to do. 

The modeling of complex mechanical 
systems for durability is a challenge, however, for 
several reasons. The durability of a complex 
mechanical system is affected by many different 
ways failure can occur, including (but not limited 
to) overload, fatigue, thermal, corrosion, and 
wear. Significantly, these factors are not really 
independent of each other, and there can be 
significant coupling between thermal loads, 
corrosion and fatigue-inducing mechanical loads 
for failure of systems. Therefore, to get the most 
accurate assessment, we can’t treat these different 
“physics of failure” separately, but must combine 
them into a single model/simulation. 

Another major complication with this is that 
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fatigue (to name a common physics-of-failure) is 
not a deterministic process, but rather is a 
stochastic one. Other stochastic elements are also 
important to the durability of the system, such as 
material impurities, geometric tolerances in 
manufacture, and usage history. It is very 
inappropriate to think that we can ever get a 
deterministic result from the simulation for 
anything in the area of fatigue lifetime or even for 
general durability. Stochastic methods are 
extremely important to capture all the sources of 
variability in the system: material, manufacturing, 
operating environment, maintenance history, and 
differences in operator behavior. The answers 
will all be phrased in terms of probability 
distributions. 

Then, as a final complication, the 
optimization we wish to perform is not going to 
an optimization based on deterministic 
constraints and objective functions, but rather is 
“optimizing under uncertainty” where the 
objective and the constraints are stochastic 
measures, and we need to define some level (an 
α-cut) of staying inside the constraints. For 
example, do we want a 90% chance that we don’t 
violate constraints, taking into account all 
stochastic variability, or would 95% or 99% be a 
better level of confidence? The optimum 
computed will be affected by the α-cut chosen. 

 
1.1 The Scope of the Problem 
 

Prof. K.K. Choi, of the University of Iowa, 
previously performed [Choi, 2001] a 
reliability-based optimization of the design for an 
A-arm on a current military ground vehicle, using 
no sources of uncertainty and only one 
physics-of-failure (fatigue). This was done using 
serial computing. He reported using 768 Finite 
Element Analysis (FEA) runs of small-sized 
models (30K – 200K DOF) and taking 3.55 days 
of compute cycles. This was just for a single 
component and a single physics. 

While he demonstrated part of the method, he 
was criticized for optimizing a single component 
in isolation from the rest of the system. System 
optimization is best done by considering the 
system as a whole, and not simply iterating 
through an optimization one component at a time, 
hoping for convergence to a system optimum at 
the end. 

Prof. Choi estimated that to do a full vehicle, 
his method would take at least 100 times the 
computing cycles, or 76,800 FEA runs and 355 
days in serial mode. But, he reports, the FEA are 
all largely independent and could be done in 

parallel. Utilizing 1,000 processors each capable 
of doing a single FEA run on a small-size model 
in serial, he projects that the turn-around time 
drops to below half a day. 
 
1.2 Our Goal 
 

We are planning for something even more 
ambitious, since we want to optimize a whole 
system (many components interacting with each 
other) while using four or five physics-of-failure 
and many sources of uncertainty requiring 
Monte-Carlo techniques. Estimates climb into the 
tens of millions of FEA runs of small-sized 
models, and hundreds of years of clock time if 
done in serial. Fortunately, there is no need to do 
this in serial, since most of the FE analyses are 
independent, and we can parallelize. Utilizing 
10,000 processors to parallelize the FEA runs will 
keep the turn-around time below two weeks. To 
be useful in influencing the acquisition process, 
turn-around times longer than week are not 
acceptable. Unfortunately, we cannot 
immediately jump to using 10,000 processors, but 
will have start out more modestly and grow to that 
level. 
 
 

2. THE METHOD 
 

        Two key features of this method are that it is 
physics-based, starting from first principles, 
rather than heuristic, and that it seeks to handle 
interactions between different components of the 
ground vehicle and different physics-of-failure on 
a non-heuristic basis. We are seeking methods to 
compute fatigue, thermal stress, corrosion and 
other causes of failure using physics-based 
equations as can be found in textbooks or 
handbooks, and do not want to depend on 
heuristically generated response surfaces or some 
other ‘rule of thumb’ based on statistical 
manipulation rather than physics first principles. 
We want to predict the reliability of the ground 
vehicle starting at the material level, working up 
through components, assemblies and subsystems 
to the system level, while having a good scientific 
basis for each step, rather than just a statistical 
basis. 
        Understandably, this takes a large amount of 
computing to accomplish. We parallelize at 
several different levels, including assigning 
different components to run on separate sets of 
processors and by configuring different physics 
of failure onto their own processors.  This, 
however, is not perfect, as the problem requires 



some coupling between the different physics and 
also between components. This coupling must be 
accounted for somewhere in the simulation. Still, 
with a scheme of dividing the problem up by parts 
of the vehicle, failure modes, and dealing the 
stochastic uncertainty using multiple processors, 
we plan to rely on the High Performance 
Computers (HPC) to accomplish the 
computational analysis. 
        The intended end-use of this method is to 
quickly and accurately generate a prediction of 
the reliability for a proposed design, so that this 
prediction can be used for trade-off studies or for 
optimization of the design. As such, the method 
must only use input which would be generally 
available during the design cycle when trade-off 
studies are performed. To actually have any 
influence on the final design, the prediction must 
be accomplished in a short amount of time, so the 
results are available for the next design iteration. 
We expect that unless a prediction can be made in 
a week, we will miss the opportunity to guide the 
design loop process toward greater reliability. 
 
2.1 Massive Number of FEA Runs 
 
        The main idea that we are using is that the 
reliability analysis incorporates a large number of 
FEA analyses, most of which are independent. 
The greatest speedup in time to final answer will 
come from spreading the FEA runs across a large 
number of processors to be executed in parallel. 
This will require methods to break the large scale 
systems into lower scale ones, and methods to 
break apart different physics-of-failure into 
separate analyses loosely coupled with each other. 
An automated process for generating the 
necessary multiplicity for the Monte-Carlo 
technique to address the uncertainties will be 
needed. Finally, a method to consolidate the 
results back up to the system level will be 
required. 
 
2.2 Course Grain versus Fine Grain 
Parallelization 
 

We did a preliminary study to decide if there 
is an advantage to parallelize a single FEA run, or 
simply run a number of FE analyses in a serial 
fashion simultaneously. The results of this study 
showed that our typical FEA runs are not 
particularly large, but we need a lot of them run. 
Culling from the analysis of the  A-arm done in 
[Choi, 2001], we estimate that a ground vehicle 
consisting of 100 components, using four 
physics-of-failure, and 100 Monte-Carlo points 

for computing the stochastic distribution will 
require 30,720,000 finite element analyses (FEA) 
each in the range of 30~200k DOF. See figure 1 
for an example of the process flow used to derive 
these numbers. 

Thus, significantly more speed up could be 
achieved by carrying out a number of FE analyses 
simultaneously, rather than trying to make each 
FE analysis faster.  Parallelizing by putting one 
FEA on each processor but running 1000 at a time 
counts more than spreading a 200k DOF FEA 
across 100 processors.  

As it turns out, while this is a very good way 
to parallelize the method, it leads to a significant 
challenge for the project, as we will discuss later 
in this paper.  
 
2.3 The Challenges 
 
        We expected to find several challenges in the 
computational process caused by the need to 
generate, coordinate, and finally consolidate the 
individual results. At the lowest level, we rely on 
native queueing software to coordinate 
scheduling many FEA runs onto the processors. 
        We did find a number of challenges. We 
needed work flow software so we scripted our 
own work flow control. This provided a challenge, 
but we overcame it and now have in-house 
scripted work flow control for all further in this 
research. 
        We also encountered a challenge obtaining 
the base data needed for the study, particularly in 
the area of uncertainty distributions for the 
material properties of the steel in the part being 
studied. This is discussed further below. 
 
 

3. THE PROJECT 
 

        We made the first set of runs in the May- 
June 2007 timeframe on the HPC systems located 
at U.S. Army RDECOM-TARDEC in Warren, 
MI. We describe here the results seen in these 
runs.  
        We analyzed the lower driver’s side A-arm 
from another military ground vehicle. (See figure 
2 for the part analyzed.) We set up an 
optimization to reduce the weight of the design 
and to improve fatigue life. We chose this part 
because it was very similar to another study done 
using serial processing earlier, and there was 
enough data available for this vehicle and this part 
to serve as a test case. 
        We wanted to do a multi-scale, 
multi-physics analysis of a subsystem, but being 



limited on resources we could bring to the pilot 
project, we found that the only way to get 
anything run was to be more modest in our 
immediate goals. The pilot project was restricted 
to only did a single component and a single 
physics-of-failure. 
 
 
3.1 The Computer Hardware 
 
        Three computer systems were used for this 
project. The first was eight 1.3 GHz processors, 8 
Gbytes memory and 72 Gbytes local disk space. 
The second was equipped with 24 MIPS 
processors, 24 bytes memory and 72 Gbytes local 
disk space. The third was implemented with 32 
MIPS processors, 32 Gbytes memory and 36 
Gbytes local disk space. All three are part of the 
TARDEC HPC System. TARDEC HPC has ties 
with the DoD HPC Modernization Program. 
 
3.2 Reliability/Fatigue Analysis software 
 
        We used fatigue analysis software, design 
sensitivity software and reliability-based design 
optimization code. All three were ported to run in 
the TARDEC HPC environment.  
        In addition to these, we made use of 
numerical analysis software. This was used 
primarily to perform the optimization in the loop. 
 
3.3 Finite Element Analysis solver 
 
        We needed extensive use of a finite element 
analysis solver. To accomplish significant 
parallelization of the method, we required 
multiple copies of an FEA solver be running on 
different processors, solving variations of the 
same analysis, in parallel. We found that most 
vendors of FEA code treat this situation as 
requiring a license for each solver run. So, to run 
on sixteen processors required having sixteen 
licenses, and to run on one hundred processors 
would have required one hundred licenses. 
 
3.4 Parallelization and work flow control 
 
        RBDO demands multiple reliability analyses 
for a given design. In the pilot study, we refined 
the method to allow that reliability analyses be 
performed only for the active/violated 
probabilistic constraints. These were executed in 
a parallel manner on the HPC system. By 
eliminating the non-active constraints, we reduce 
the computation burden. Thus, by this reduction, 
fewer processors are needed to parallelize the 

entire process of reliability analysis. The 
parallelization has been successfully tested using 
LSF on the TARDEC HPC. 
 
3.5 Preprocessing software 

 
        We required multibody dynamic analysis of 
the whole vehicle to obtain loads for the fatigue 
analysis. This dynamic analysis was performed in 
a preprocessor step. This was not done during the 
parallelization stage, and the same loads were 
used throughout the entire pilot run. The 
dynamics software was just for preprocessing the 
dynamics loads. 
        We also used meshing software for creating 
the original mesh on the part we were analyzing. 
This was done once in a preprocessor step. The 
FEA software was run in a preprocessor step to 
determine ‘hot spots’ and pre-configure the 
fatigue solving step.  

 
3.6 Results of scalability study 
 
        The RBDO parallelization was tested out by 
conducting a scalability study using different 
combinations of processors from 1 to 32, licenses 
of the FEA solver software from 1 to 16, and 
other settings. The throughput times were then 
compared to get a sense of how the problem 
throughput would be affected by larger numbers 
of processors, FEA licenses, etc. The results of 
this study are provided here. 
 
        For the scalability study, 22 experiments (20 
training runs and 2 test runs) were designed with 
different numbers of FEA solver licenses, 
processors, and constraints. We noticed that a 
dependence of the parallel runtime (PR) on the 
number of FEA licenses occurs when the number 
of licenses is less than the number of processors 
and individual constraint runs are forced to wait 
for a license to become available. For the MPP 
search, finite element analysis accounts for about 
22% of computational time in a serial run. So the 
number of licenses has a large effect on the 
parallelization of the process, but does not 
completely control the degree of parallelization. 
For the 20 training runs, 1, 2, 4, 8, and 16 licenses, 
1, 8, 15, and 30 processors, and 15 and 30 
constraints were used. Not all possible 
combinations made sense for a run. In particular 
the number of processors should be greater or 
equal to the number of licenses, else there are 
unused licenses. We had a slight violation of this 
rule for two of the runs, since configuring those 
runs for all the available 16 licenses was more 



natural. Also the number of constraints should be 
greater or equal to the number of licenses and the 
number of processors; else there are unused 
licenses or processors. Again a slight violation of 
this rule is present in two of the runs. Finally two 
test runs were performed as a “sanity check” on 
using the training runs in a predictive way. Please 
see Figures 3 and 4 for two interpolation surfaces 
of runtimes based on numbers of processors and 
FEA licenses used. 
 

 
 

4. FOLLOW-ON STUDY 
 
        The results of the pilot experiment were 
promising enough to have generated a follow-on 
study to extend RBDO into more areas. We want 
to do a multi-component optimization at a 
system-level, as well as increasing the number of 
sources of uncertainty. We want to extend, also, 
into physics-of-failure beyond fatigue, such as 
thermal and corrosion. 
        A study is underway now, in the model 
development phase, for a six body RBDO of a 
frame and powerpack for another military ground 
vehicle. Of the six bodies in the problem, only 
four are “active” in the sense that we are allowed 
to modify them in the optimization. The other two 
are “constraint” bodies which we must have in the 
system, but leave unchanged. We are greatly 
increasing the number of sources of uncertainty, 
and we are adding a thermal component to the 
reliability, in addition to fatigue. 
        This study is expected to be executed on the 
TARDEC HPC system in the Fourth Quarter of 
FY08. The new TARDEC HPC is expected to be 
available in August. At the current rate of model 
development, we fully expect to be executing by 
September 2008. 

 
5. THE PAYOFF 

 
        When talking about reliability, it is 
important to consider ‘total lifecycle cost’ as the 
relevant measure. This is because designing to 
increase reliability often costs extra at the front 
end during research, development, design and 
manufacturing phase, but realizes savings during 
the Operations and Sustainment phase of the life 
cycle due to reduced costs to keep the vehicle 
available. To understand the value added by the 
increased reliability, the key is to balance the 
added up front costs against the deferred savings. 
In other words, we need to look at total cost 
across the entire life cycle of the vehicle. 

        Following the law of diminishing returns, 
the projected savings from improved reliability is 
often based on the starting level of reliability in 
the system. If a fleet is showing low reliability 
before efforts begin, then a large cost savings due 
to improved reliability is possible, but it is hard to 
realize great savings when starting from a fleet of 
very reliable vehicles. Based on current data, it 
appears that improved reliability in Army ground 
vehicles has a potential for respectable cost 
savings. 
        Total savings will also be a function of the 
number of similar vehicles in the fleet based on 
the improved design. It is obviously easier to 
realize large cost savings from improving the 
reliability of a design with 10,000 fielded vehicles 
than improving a design that only fields 50 
vehicles. Still, once methods are developed to 
improve the reliability of a design, and the cost to 
develop the methods is recouped from improving 
the design of a few vehicles, the same methods 
will still be available to use on all other vehicle 
designs with minimal added cost. The key, 
therefore, is to apply the new methods to a few 
systems where the development costs of the new 
methods can be quickly recouped, and then 
deliver to the Army a ‘paid for’ tool to improve 
the reliability for other Army platforms. 
        There is potential for tens of millions of 
dollars in total life cycle cost savings for a fleet of 
a single ground vehicle design due to improved 
reliability designed from the beginning. These 
savings will be spread across the whole life cycle 
as well as across the fleet of similar vehicles. If 
this method can be used to improve the design of 
just ten future vehicles, with various sizes of 
fleets and various results of reliability 
improvement for each, the method could 
potentially lead to savings that provide an 
excellent return on investment in the RBDO 
development. Even just one vehicle design will 
more than repay the costs of developing and 
implementing the method, based on modest 
reliability improvements to the design from the 
use of this tool. 
 

CONCLUSIONS 
 

        While the Army struggles with the reliability 
of its current and future fleets of ground vehicles, 
there is a technology gap which can be bridges 
with RBDO. We want to make it a good tool, one 
based on physics and not heuristics, and one that 
considers system level reliability with 
interactions between components and between 
failure modes captured. This requires the 



massively parallel environment of HPC to be 
realized quickly enough to impact the design loop. 
We are working to build this technique, make it 
multi-physics, multi-scale and non-heuristic. As 
this project progresses, we will add additional 
complexity to the models and generate 
predictions that encompass the true range of 
reliability. 
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Figure 1. Example of method described. 

 

 
 

Figure 2. Lower A-arm. 
 

Figure 3. Software loop diagram. 

 
 

 
Figure 3. Scalability Interpolation Surface for 30 

constraints. 
 
 

 
 
 
Figure 4. Scalability Interpolation Surface for 15 

constraints. 
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